Exercise 110

Suppose f is a differentiable function such that $f(g(x))=x$ and $f^{\prime}(x)=1+[f(x)]^{2}$. Show that $g^{\prime}(x)=1 /\left(1+x^{2}\right)$.

Solution

Suppose that

$$
f(g(x))=x .
$$

Differentiate both sides with respect to x.

$$
\frac{d}{d x}[f(g(x))]=\frac{d}{d x}(x)
$$

Use the chain rule on the left side.

$$
f^{\prime}(g(x)) \cdot g^{\prime}(x)=1
$$

Use the fact that $f^{\prime}(x)=1+[f(x)]^{2}$.

$$
\left\{1+[f(g(x))]^{2}\right\} \cdot g^{\prime}(x)=1
$$

Use the fact that $f(g(x))=x$.

$$
\left(1+x^{2}\right) \cdot g^{\prime}(x)=1
$$

Therefore, dividing both sides by $1+x^{2}$,

$$
g^{\prime}(x)=\frac{1}{1+x^{2}}
$$

